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Algebraic Bethe ansatz for the non-linear Schrodinger model: 
I. Multicomponent fields 

Y K Zhou 
Center of Theoretical Physics, CCAST (World Laboratory), Beijing, People's Republic of 
China and Institute of Modern Physics, Xibei University, Xian, People's Republic of China 

Received 23 September 1987 

Abstract. The generalisation of the quantum inverse scattering method is used to derive 
the Bethe ansatz equations for a multicomponent non-linear Schrodinger model of a system 
with n species (or colours) of bosons or fermions. The matrix periodic boundary conditions 
for bosons and fermions are obtained and the relationship between them is discussed. The 
eigenstates for the infinite conserved quantities of the system are constructed. Lastly, we 
generalise these results to the non-linear Schrodinger model with the mirror-image delta 
potentials proposed by Schulz. 

1. Introduction 

A many-body system with two-body delta potentials has been extensively studied. As 
a field theory this system is the quantum non-linear Schrodinger model (QNSM), and 
the Hamiltonian is equal to 

where c > 0 is the coupling constant. We assume that the system consists of n species 
(or colours) of bosons or fermions and q is a n x 1 matrix with the equal-time 
commutation relations 

where the factor p = 1 and -1 for boson and fermion fields respectively. Here q is 
said to be a supermatrix with the structure (m ,  n )  x ( k ,  I), if m rows and k columns 
have even parity and the other n rows and 1 columns have odd parity. We indicate 
this as q - (m ,  n) x (k ,  I ) .  Hence the parity of the matrix element qij may be written 
as p ( q i j )  = p ( i ) + p ( j ) ,  and p ( q i j )  = O  or 2 for a boson field and p ( q i j )  = 1 for a fermion 
field. 

The model (1.1) is integrable and some exact results were obtained. By using the 
Bethe ansatz (BA) technique the BA equations of the model were obtained for boson 
field n = 1 by Lieb and Liniger (1963), for f-spin (or two species) fermion field n = 2 
by Yang (1967) and extended by Sutherland (1968) for the more-colour (or high-spin) 
system n 3 2. By using the quantum inverse scattering method (QISM) the BA equations 
were derived for boson system n = 2 by Kulish (1981), for the f-spin and more-species 
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fermion system by Zhou and Zhao (1986) and extended by Fan et al (1986) for q 
having the structure ( m ,  n )  x ( k ,  0) (Zhou and Zhao 1987). The algebriac BA for the 
bosons n = 1 can be found in papers by Faddeev (1981) and Thacker (1981). For a 
given q field we could generally take it as a supermatrix in two forms, i.e. ( m ,  n )  x ( k ,  0) 
or ( n ,  m) x (0, k ) .  We consider that the same BA equations should be obtained for 
q - ( m ,  n )  x ( k ,  0) and ( n ,  m )  x (0, k ) .  

In this paper, we take q only having the structure ( n ,  0) x (0 , l )  and (0, n )  x (0, l ) ,  
or q - (0, n )  x (1,O) and ( n ,  0) x (1,O) respectively for fermion and boson systems. By 
using QISM the eigenstates of the systems are constructed to derive the BA equations, 
which are the same as that derived by Sutherland (1968) only for fermions. The matrix 
periodic boundary conditions ( PBC) for the fermions and bosons are obtained and the 
relationship between them is discussed. They are useful for the further study of the 
QNSM with q - ( m ,  n )  x ( k ,  0). Finally, the BA equations are generalised to the QNSM 

with the two-body mirror-image delta potentials, which was proposed by Schulz (1987) 
to solve a Kondo model with quadratic band energy. 

2. Algebraic BA 

The auxiliary linear equation in QISM connected with the model (1.1) is 

a 
- T (  X, y I A ) =: L( x I A ) T (  X, y I A ) : 
ax 

T (  x, x I A ) = 1 

where the colons : : mean normal product. A is the spectral parameter and 

From the structure of q we know that both L(x I A )  and T(x, y 1 A )  have the supermatrix 
structure ( n ,  1) x ( n ,  1) or (1, n )  x (1, n )  and (0, n +  1) x (0, n+ 1) or ( n  + 1,O) x ( a +  1,O) 
for fermions and bosons respectively. 

The monodromy matrix is 

where a and b may be taken as 1 ,2 , .  . . , n by our convention. 

relation (YBR): 
Using the auxiliary linear equation (2.1), we can find the following Yang-Baxter 

R(A - P ) T L ( A )  0 T L ( P ) =  T L b )  0 TL(A)R(A - E L )  (2.3) 
S S 

and 

!?(A)= b(A)+a(A)P,,+, 
iKC 

b ( A )  = 1 - u ( A )  =- 
A +iKc (2.4) 

where K = 1 for q - (n ,  0) x ( 0 , l )  and (0, n )  x (0, l),  K = -1 for q - (0, n )  x (1,O) and 
(n ,  0) x (1,O). P,,, is the graded permutation operator 

Pn+l = (-1)P”’E, @ Eji .  
S 
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The double indices i and j mean summations over 1,2,  . . . , n + 1. 0 indicates the direct 
product and the symbol s below 0 indicates that the direct product is defined as that 
in Grassmann algebra. E,  is an ( n  + 1) x ( n  + 1) matrix, for which only a matrix element 
( i , j )  is unity and the others are zero. 

YBR (2.3) enables us to give the commutation relation among A ( h ) ,  B ( h ) ,  C ( h )  
and D ( h ) .  We write out some of them, which play a fundamental role for the 
construction of the eigenstates of the systems. They are 

(2.5b) 

C ( A ) a C ( P u ) b [ b ( h  - p ) - a ( h  - p ) K ] ( - K p )  = C(p)b'C(A)arr(A - p ) b ' a ' , a b  ( 2 . 5 ~ )  

[Str T,(h), Str TL(p)] = 0 (2.6) 
r ( h ) =  -Kpb(A)+a(h)P, (2.7) 

Str T,(h) = - K p  tr A ( h )  - D ( A )  

where the double indices a', b', c' and a mean summations over 1 ,2 , .  . . , n by our 
convention. The permutation operator P, is 

P, = eab 0 eba. (2.8) 
eab is an n x n matrix in which element (a, b )  equals unity and the others are zero. 

Commutation relation (2.6) enables us to consider Str T,(h) as a generating function 
of the infinite set of the conserved quantities. Using (2.1), we can expand the mono- 
dromy matrix T,(A) as the Neumann series and further obtain the following asymptotic 
expansion (Pu and Zhao 1986): 

lim In[-KStr T,(A) exp(ihl)]  = Cl/ih + C,/(ih)'+ C3/( ih)3+.  . . 
ih+-m 

C,  = -cN 

C 2 = - i c P - c 2 N / 2  
(2.9) 

C3 = cH -ic2P - c 3 N / 3  

where all C,, i = 1 ,2 , .  . . , are the conserved quantities of the system. Hence the 
Hamiltonian of the system is H = C3/c - C2+ cC1/6. N and P are the particle number 
and momentum of the system respectively and have the form 

N =  dxq tq  (2.10a) 

(2.10b) 

In order that the model be soluble with the aid of the algebriac BA, it is necessary 
that we find the eigenstates for the infinite set of the conserved quantities, or Str T,(A). 
Define the vacuum state 10) by q ( x ) , / O )  = 0, a = 1 ,2 , .  . . , n. It leads to 

I 
I P = - i  dx q' dqldx. 

A(h) lO)  = exp(ihl)lO) 
D(A)IO) = exp(-ihL)lO) 

B ( A ) ~ o )  = o 
C(h)lO) f 0. 

(2.11) 
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These could be obtained from the Neumann series of T,(A) (Faddeev 1981, Thacker 
1981). According to the commutation relations ( 2 . 5 ~ )  and (2.5b), we should consider 
the following state vectors: 

( A i ,  A 2 , .   AN,^)= C ( A 1 ) a , C ( A 2 ) a 2 .  - .  C(A~)a,Io)f"l"' Y(Ai G . .  A N )  (2.12a) 

for bosons 
Y(Al . . . A N )  = n u ( A J - A ! ) - '  for fermions 

l < J = l  

(2.12b) 

In order that those are the eigenstates for Str T,(A) it is necessary and sufficient 

r' 
and the state vectors satisfy 

/ A l .  . . A , .  . .  A,. . . AN,f)=p/A1 . .  . A J . .  . A , .  . .  A N , f ) .  

that f be an eigenstate for the operator t ( A )  

t ( A l f =  4 A l f  (2.13) 

and that the momenta A satisfy the equations 

The operators which appear in equation (2.13) are 

t ( A )  =Tr  T ( A )  

T ( A ) = L ( A  - A N ) .  . . L(A - A I )  

L ( A - A i ) = p ( A - A , ) P ' , + a ( A  - A i )  

-ipc 
A - Ai - ipc 

@ ( A  - h i )  = 1 - a ( ~  - A ~ )  = 

( 2 . 1 5 ~ )  

(2.15b) 

(2.15 c) 

(2.16) 

where the permutation operator PL is considered as a n x n matrix 

So L(A - A i )  and T ( A )  are in the n x n matrices. Using the formula PLP',, = P',,Pij, we 
may rewrite the operator t ( A )  as 

(2.15d) 

where the permutation operator Pu = ebbOejba. 
In fact, the equations (2.13) and (2.14) represent the periodic boundary condition 

( PBC) of the system. The permutation operator Pij acting on f generally is a N ! x N! 
representation of the permutation group S,. This may be reduced to a sum of 
irreducible representations by considering f of various symmetry types. Here we 
consider the system having n species of fermions or bosons. Hence the appropriate 
symmetry for (2.13) is R = [ N - Mi, . . . , MnT2 - M,-, , M,,-,]. 
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The v (A j )  are functions of the A, p and the representation R. Let R* be the conjugate 
representation of R. From (2.15d) we have 

(2.17) 

If R represents a boson system, then R* describes a fermion system with the same 
species content. Hence the matrix PBC for fermions can be obtained from those for 
bosons by the transformation (2.17) and vice versa. Moreover, this is useful for the 
further study of the QNSM with q - (m, n) x (k, 0). The v (Aj )  are independent of the 
factor K. It shows clearly that the results are the same for the fermions q - (n, 0) x (0, 1) 
and (0, n)  x (1,0), or for the bosons q - (0, n )  x ( 0 , l )  and (n, 0) x (1,O). 

We can solve equation (2.13) by using the QISM (Kulish and Reshetikhin 1981), 
which is straightforward but rather lengthy. We write only the final results as the 
following: 

N MI MI 
v ( A ) = ~  & ( A  - h i )  n a ( ~  - A \ ~ ) ) - ' V ( A ) ~ - ~ + ~  C ~ ( A \ ' ) - A ) - ~  ( 2 . 1 8 ~ )  

I i I 

and v(A) , - ,  is given by the recurrence relations 

m =  1 , 2 , .  . . , n-2  

~ ( h ) ~  = 1 

and these A!"' satisfy the following equations: 

j =  1 , 2 , .  . . , M ,  m = 2 ,3 , .  . . , n -2  

Moreover we can find 
r ( A j  - Aj+, )a ,a ,+ l ,a;a j+l  f a l - . a ~ o ~ + l - . a ~ ~  

= (-Kpb(Aj - A,+,)+ a(Aj -  Aj+ l ) ) f ( l l" 'a~a~+l . ' .L lh .  

Using ( 2 . 5 ~ )  and (2.20), we can directly prove (2.12b). 
Equations (2.19a)-(2.19~) and (2.14) or 

Aj-Ai+ic 
i A j - A i - i p c  

exp(2iAjl) = - p  n n ~ ( A { ' ) - A ~ )  j = 1 , 2 ,  . . . ,  N 

(2.18b) 

( 2 . 1 9 ~ )  

(2.19 b) 

(2 .19~)  

(2.20) 

(2.21) 

are the BA equations for the fermions p = -1 and the bosons p = 1. a ( A )  is given by 
(2.16). Substituting A j m )  = Ajm) -$mc into the BA equations, for the fermions p = -1 
these will coincide with the results given by Sutherland (1968). For the bosons p = 1 
our results as n = 1 will be reduced to those in the works given by Lieb and Liniger 
(1963), Faddeev (1981) and Thacker (1981) and as n = 2 to those given by Kulish (1981). 
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3. BA equations for the QNSM with S ( x + y )  potentials 

As a special case, we set q as 

with the commutation relations 

+i(x)+J:(Y) + +j(Y)+i(x) = aija(x-Y) 

+i(x)+j(Y) + +j(Y)+i(x) = O *  

Substituting (3.1) into the model ( l . l ) ,  we will get the second quantised form of 
the following model: 

N N 

H,=- C d2/dx:+2c 1 ( S ( x i - x j ) + a ( ~ j + x j ) )  
i = l  i i j  

which was proposed by Schulz to discuss a Kondo model with quadratic band energy. 
In this section, we will show that the BA equations (2.21) and (2.19a)-(2.19~) for 

n = 4 and p = -1 can be generalised to the model (3.2). The monodromy matrix T,(A) 
is defined as 

T,(h)= T ( L + E ,  -L lA)  

where E is an infinitesimal positive quantity. The same asymptotic expansion as (2.9) 
in the limit iA + --oo for Str T,(h) exp(ihl)  could be obtained. Moreoverthe asymptotic 
expansion of Str TL(h)  exp(-iAl) in the limit ih +CO gives the other conserved quan- 
tities. Notably, tr(1 dx :qqt: 5 d x  :qi dq'ldx:) is one of them. Its eigenvalue can be 
obtained from the eigenvalue of Str TL(A)  exp(-ihl) in the limit iA +CO and it is 

3 * M m  c a,(M,,M,,M,)  c A!"'. 
m = l  

In fact this conserved quantity is 
2 M m  

A$"'=O. 
i = l  

The momentum, particle number 
r 

i = l  

identical to zero, and it leads to 

and Hamiltonian are respectively 
r 

N , = i N = :  dxqtq  J P=-i dxq 'dq/dx=O J 
and 

H, =;H = f  dx[(dqt/dx) ( d q / d x ) + c  :qtqqtq:]. (3.3) I 
The monodromy matrix T L ( h )  is the solution of the auxiliary linear equation (2.1) 

for n = 4 and satisfies the YBR (2.3). Hence the BA equations of the model (3.2) or 
(3.3) could be directly obtained from the equations (2.21) and (2.19a)-(2.19~) for 
n = 4 and p = - 1 provided that 

A.=k.  J J  A NTtj = - kj j = 1 , 2 , . . , ,  N, 



Bethe ansatz for non-linear Schrodinger model: I 

and 
A(,,) =A(," -$mc A(Mm)+i , P I  . = -A(," , -fimc 

j =  1 , 2 , .  . . , M ,  m = 1,2,3.  

The particle number and the energy are N, and Cz, k f  respectively. 
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